range base for에서 데이터셋의 요소를 변경할 수 있을까요?

정답은 있을 수도 있고, 없을 수도 있습니다.

 

앞 선 예제 코드에서는

for( auto i : NumberList )

이런 식으로 사용했는데 이런 경우 i의 값을 for 문 안에서 변경 할 수 있지만 for 문을 나오면 NumberList의 요소에는 적용되지 않습니다.

 

만약 요소의 값을 변경하고 싶다면 참조를 사용하면 됩니다.

for( auto &i : NumberList )

이런 식으로 하면 for 문을 나와도 NumberList의 요소는 변경이 적용되어 있습니다.

 

그런데 만약 for 문에서 요소 값을 변경하지 못하도록 하려면 const를 사용합니다.

for( auto const i : NumberList )

 

for 문에서 데이터셋 요소를 접근할 때는 임시 변수를 만들기 때문에 이 비용을 줄이고 싶다면 참조를 사용하면 좋습니다.

또 만약 요소의 값을 변경하지 못하도록 하고 싶다면 const 참조를 사용합니다.

for( auto const &i : NumberList )

 


< 예제. 3 >

#include <iostream>

#include <vector>

 

int main()

{

           std::vector<int> NumberList;

           NumberList.push_back( 1 );

           NumberList.push_back( 2 );

           NumberList.push_back( 3 );

          

           for( auto i : NumberList )

           {

                     std::cout << i << " * 10 : ";

 

                     i *= 10;

                     std::cout << i << std::endl;

           }

 

           for( auto i : NumberList )

           {

                     std::cout << i << "  ";

           }

          

           std::cout << std::endl << std::endl;

 

 

           for( auto &i : NumberList )

           {

                     std::cout << i << " * 10 : ";

 

                     i *= 10;

                     std::cout << i << std::endl;

           }

 

           for( auto i : NumberList )

           {

                     std::cout << i << "  ";

           }

 

           std::cout << std::endl;

 

           return 0;

}

 

< 실행 결과 >




저작자 표시
신고
by 흥배 2012.09.26 01:07

너무 당연한 것이지만 range base for에는 배열 뿐만이 아닌 STL의 컨테이너들도 사용할 수 있습니다.

아래 예제를 통해서 STL 컨테이너를 range base for문에서 어떻게 사용하는지 보겠습니다.

 

< 예제. 2 >

#include <iostream>

#include <vector>

#include <unordered_map>

#include <string>

 

int main()

{

           std::cout << "range base for - vector" << std::endl;

 

           std::vector<int> NumberList;

           NumberList.push_back( 1 );

           NumberList.push_back( 2 );

           NumberList.push_back( 3 );

          

           for( auto i : NumberList )

           {

                     std::cout << i << std::endl;

           }

           std::cout << std::endl;

 

 

 

           std::cout << "range base for - unordered_map" << std::endl;

 

           std::unordered_map<int, std::string> NumString;

           NumString.insert( std::make_pair<int, std::string>(1, "1") );

           NumString.insert( std::make_pair<int, std::string>(2, "2") );

           NumString.insert( std::make_pair<int, std::string>(3, "3") );

 

           for( auto i : NumString )

           {

                     std::cout << "key : " << i.first << ", value : " << i.second << std::endl;

           }

 

           std::cout << std::endl;

 

           return 0;

}

 

< 실행 결과 >


 

 

range base for문은 기본적으로 STL의 이터레이터를 지원하는 컨테이너라면 문제 없이 사용할 수 있습니다. 그러므로 프로그래머가 자신만의 컨테이너를 만든다면 STL에서 정의한 이터레이터의 기능을 구현하면 range base for 문을 사용할 수 있습니다.

 

이전에는 STL 컨테이너의 모든 요소를 반복문에서 사용할 때  for_each를 사용했는데 사용하기 위해서 준비해야 할 것이 많았는데 VC10에서 lambda 덕분에 쉬워졌습니다. 그러나 range base for 문과 비교해보면 for_each+lambda 보다는 range base for 문이 더 사용하기 편한 것을 알 수 있습니다.

 

이제 VC11부터 for 반복문은 꼭 range base for를 사용하기 바랍니다^^

저작자 표시
신고
by 흥배 2012.09.21 13:01

앞에까지는 STL의 알고리즘에 추가된 것들을 다루었는데 이번에는 컨테이너 하나를 소개하겠습니다사실 이 컨테이너는 저도 얼마 전까지만 하더라도 새로 추가 된지 몰랐습니다.^^;

 

새로 추가된 컨테이너의 이름은 forward_list입니다.

이름을 들어보니 대충 어떤 컨테이너인지 감이 오시죠?^^ 네 이 컨테이너는 기존의 list 컨테이너와 비슷한 종류의 컨테이너입니다.

 

 

forward_list를 만든 이유

표준 라이브러리(STL)에는 이미 리스트(std::list) 라이브러리가 있습니다이것은 쌍 방향 리스트입니다. list는 사용하기는 편하지만 사용 메모리나 처리 속도에 조금 아쉬운 점이 있습니다또 대 부분의 상황에서 쌍 방향 리스트가 필요한 경우보다는 단 방향 리스트만으로 충분한 경우가 자주 있습니다이런 이유로C++0x에서는 단 방향 리스트를 추가하기로 했습니다.

 

 

forward_list의 설계 방침

1. 특별한 이유가 없다면 forward_list는 기존의 list의 설계에 맞춘다.

2. 설계 상의 선택 기가 여러 개인 경우 성능(속도와 사이즈)을 최우선 한다(C의 구조체로 구현하는 경우와 비교하여 Zero Overhead로 한다).

3. std::list insert erase를 forward_list에서도 제공할 수 있지만 구현이 복잡해지고 성능 측면에서 좋지 않으므로 제공하지 않는다.

4. 다른 STL의 컨테이너들에 있는 size 함수를 제공하지 않는다이유는 요소 수를 보존하는 멤버를가지고 있으면 C언어에서 구현한 것과 비교해서 불필요한 메모리를 사용한다. 만약 이런 멤버를 가지고 있지 않으면서 size 함수를 지원하면 호출할 때마다 모든 요소를 세어야 하므로 계산량이 O(N)이 된다(그런데 유저는 다른 컨테이너와 같이 size의 계산량이 작을 것이라고 생각할 수 있다). 또 이미 unordered와 같은 연상 컨테이너도 기존의 요소를 만족하지 않고 있다.

  

 

STL list 컨테이너와 다른 점

forward_list는 기존의 list와 아래와 같은 점이 다릅니다.

1. forward_list는 단 방향 리스트(singly-linked-list)이다각 요소는 그 다음 요소를 가리키는 포인터를 하나만 가지고 있다(list은 양 방향 리스트).

2. (단 방향 리스트이므로) list에 비해서 메모리를 작게 사용한다이것은 각 요소의 메모리만이 아닌 컨테이너 그 자체의 사이즈도 작다. int 형에 대해서 list 12바이트라면 forward_list 8바이트이다(64비트에서는 각각 24, 16).

3. list에 비해 삽입/삭제 속도가 더 빠르지만 그 차이는 크지는 않다

4. 한 방향으로만 이동할 수 있다.

5. 삽입과 삭제는 지정한 요소의 다음 요소만 가능하다.

 

 

forward_list의 멤버 리스트

기능

멤버

대입

assign

반복자

befor_begin

 

cbefore_begin

 

begin

 

end

 

cbegin

 

cend

비었는지 조사

empty

현재 크기(size)

지원 안함

사이즈 변경

resize

모두 삭제

clear

선두에 추가

push_front

선두 요소 삭제

pop_front

선두 요소 참조

front

삽입

insert_after

삭제

erase_after

조건 삭제

remove

 

remove_if

중복 요소 삭제

unique

교환

swap

병합

merge

정렬

sort

반전

reverse

 


STL의 컨테이너를 사용해보았다면 forward_list라고 해서 딱히 어려운 부분은 없습니다다만 forward_list이 단 방향 리스트라는 것과 다른 컨테이너에서는 지원하는 기능이 일부 없다는 것을 잘 숙지해야 합니다.

 

필요한 헤더 파일

forward_list는 이름과 같은 ‘forward_list’라는 헤더 파일을 포함해야 합니다.

#include <forward_list>

 

 

[예제] forward_list를 사용하여 요소 추가순회삭제하기

#include "stdafx.h"

#include <iostream>

#include <forward_list>

 

using namespace std;

 

 

int main()

{

           forward_list< int > flist;

 

 

           cout << "flist에 추가한 요소들 출력" << endl;

           // 추가하기

           auto iter = flist.before_begin();

           for( int i = 0; i < 5; ++i )

           {

                     iter = flist.insert_after( iter, i );

           }

                    

           // 순회

           for( iter = flist.begin(); iter != flist.end(); ++iter )

           {

                     cout << *iter << endl;

           }

 

           cout << endl;

           cout << "flist의 요소들 중 일부를 삭제한 후 남은 요소들 출력" << endl;

           // 순회 하면서 일부 요소 삭제

           auto prev_iter = flist.before_begin();

           iter = flist.begin();

           while( iter != flist.end() )

           {

                     if( 3 == *iter )

                     {

                                iter = flist.erase_after( prev_iter );

                                continue;

                     }

                     ++prev_iter;

                     ++iter;

           }

 

           // 순회

           for( iter = flist.begin(); iter != flist.end(); ++iter )

           {

                     cout << *iter << endl;

           }

 

           return 0;

}

 

결과 >


 

위 예제를 보면 아시겠지만 forward_list std::list에 비해 성능 면의 이점을 가지고 있지만 사용 측면에서는 조금 불편한 점이 좀 있습니다그러나 C와 비슷한 성능을 내고 싶은 경우에는 좋은 선택 기가 될 수도 있습니다.

 


참고

http://msdn.microsoft.com/ko-kr/library/ee373568.aspx

저작자 표시
신고
by 흥배 2012.09.14 09:00

constexpr는 변수함수클래스를 컴파일 타임에 정수로 사용할 수 있도록 해줍니다즉 상수로 취급할 수 있는 작업은 컴파일 타임에 처리하도록 할 수 있습니다

 

constexpr를 변수에 사용

constexpr int aa = 11;

이것은

const int aa = 11

와 같은 의미를 가집니다.

 

그러나 아래와 같이는 사용할 수 없습니다.

int input_num = 0;

constexpr int aa = input_num;  // 에러


constexpr
로 지정된 변수는 꼭 컴파일 시에 정수가 되기 때문에 변수 선언 시 대입이 정수 식이어야만 합니다. const와의 차이는 const는 컴파일 시에 정수가 아니어도 괜찮고 변수 선언 시 대입 값이 정수 식인 경우 정수 식이 되고그렇지 않은 경우는 단순히 const를 수식하는 것이 됩니다(이에 비해 constexpr는 꼭 정수 식이어야만 합니다).

 

 

 

constexpr를 함수에 사용

C++03에서는 아래의 코드는 에러가 됩니다.

int GetNum() { retun 5; }

int Numbers[ GetNum() ];

GetNum 함수는 상수 5를 반환 하는 것으로 이미 컴파일 시에 반환 값을 알 수 있습니다그러나 컴파일러는 GetNum 이라는 함수가 정수처럼 사용할 수 있는지 알 수 없으므로 정수로 취급하지 않습니다.

 

위 코드는 C++11의 constexpr를 사용하면 우리가 원하는 대로 GetNum 함수를 정수로 사용할 수 있습니다.

 

constexpr int GetNum() { retun 5; }

int Numbers[ GetNum() ];

  

constexpr를 함수에 사용할 때는 꼭 함수 본체는 { return expression; } 형태가 되어야만 합니다.

 

 

constexpr 변수는 비 constexpr 변수에 사용할 수 있으므로 아래와 같은 테크닉도 사용할 수 있다.

constexpr double power( double x, unsigned int y )

{

    return y == 1 ? x : x * power( x, y - 1 ) ;

}

 

int main()

{

    // 정수 식

    constexpr double a = power( 2, 32 ) ;

 

    // 정수 식이 아니다

    double x = 2 ; unsigned int y = 32 ;

    double b = power( x, y ) ;

}

(출처http://cpplover.blogspot.com/2010/11/gccniconstexpr.html

 

 

그리고

const int base_HP = 200;

int NPC_Lv1_HP = base_HP + 0;

int NPC_Lv2_HP = base_HP + 200;

라는 코드는 정수 계산을 하는데 실행 시에 계산되는데 이것을 constexpr을 사용하여 컴파일 시에 계산되게 할 수 있습니다.

 

constexpr int AssignHP( int nPlusHP )

{

 return base_HP + nPlusHP;

}

 

int NPC_Lv1_HP = AssignHP( 0 );

int NPC_Lv2_HP = AssignHP( 200 );




constexpr를 클래스에 사용


constexpr을 클래스에서 사용하면 클래스를 정수로 사용할 수도 있으며 메타 템플릿 프로그래밍에서는 이전에는 복잡하게 처리하던 것을 아주 간단하게 처리할 수도 있습니다. C++ 메타 템플릿 프로그래밍에 관심이 많구나 자주 사용하고 있는 분들에게는 constexpr 덕분에 프로그래밍이 한결 편해지리라 생각합니다.

 

아래의 코드는 Integer 이라는 클래스를 constexpr을 사용하여 정수처럼 사용 합니다

class Integer

{

private :

    int value ;

 

public :

    constexpr Integer() : value() { }

    constexpr Integer( int value ) : value(value) { }

 

    constexpr operator int() { return value ; }

} ;

 

int main()

{

    constexpr Integer size = 5 ; // 컴파일 타임에 정수로

 

    int x[size] ; // Integer::operator int()가 호출된다

 

    Integer object ; // 일반적인 클래스 인스턴스 화실행 시에 처리

    int y[object] ; // 당근 에러

}

출처 : http://cpplover.blogspot.com/2010/11/gccniconstexpr.html

 


또 메타 템플릿 프로그래밍에서는 아래와 같이 사용할 수도 있습니다.

#include <iostream>

 

struct pi {

    static constexpr double value = 3.14;

};

 

template <const double& r>

struct circle_area {

    static constexpr double value = r * r * pi::value;

};

 

struct radius {

    static constexpr double value = 2.5;

};

 

int main()

{

    constexpr double result = circle_area<radius::value>::value;

 

    static_assert(result == 19.625, "not equal");

    std::cout << result << std::endl;

}

출처 : http://d.hatena.ne.jp/faith_and_brave/searchdiary?word=constexpr&.submit=%B8%A1%BA%F7&type=detail

  

 

constexpr은 컴파일 할 때 결과가 이미 결정 나는 것은 컴파일 타임 때 처리를 해주어 실행 시에 불필요한 처리를 막아주고기존의 메타 템플릿 프로그래밍으로 까다롭게 만들었던 것을 아주 쉽게 구현할 수 있게 해줍니다.

 

C++11에서는 constexpr을 잘 사용하면 기존 보다 더 뛰어난 프로그래밍을 할 수 있으니 깊게 파고들 가치가 있다고 생각합니다.

저작자 표시
신고
by 흥배 2012.09.12 09:30

현재의 표준 C++에서는 부모 클래스의 특정 멤버를 오버라이드 할 때 virtual을 앞에 붙입니다.

struct Base

{

  virtual void foo( int i );

};

 

struct Derived : Base

{

  virtual void foo( int i );

}

 위의 예제와 같은 작은 코드를 만질 때는 실수를 하지 않지만 실제 일을 할 때는 크고 많은 클래스를 다루다 보면 실수를 할 수 있습니다위 예제의 경우 아래와 같은 실수를 할 수 있습니다.

struct Derived : Base

{

  virtual void foo( float i );

}

위와 같이 실수를 하면 Derived의 foo 멤버함수는 Base foo 멤버함수를 오버라이드 하지 않게 됩니다이런 실수는 에러가 아니기 때문에 골치 아픈 삽질을 할 수도 있습니다.

이런 문제를 방지하기 위해서 override가 새로 생겼습니다.

struct Derived : Base

{

  virtual void foo( float i ) override;

}

이렇게 override를 사용하게 되면 컴파일 할 때 Base 클래스에

void foo( float i )가 없는데 오버라이드 한다고 에러를 발생시켜 줍니다.

 

  

때로는 Base 클래스의 특정 멤버함수를 Derived 클래스에서 오버라이드 하지 못하도록 막고 싶은 경우가 있을 것입니다이때는 final을 사용합니다.

struct Base

{

  virtual void foo( int i ) final;

};

 

struct Derived : Base

{

  virtual void foo( int i );

}

위의 코드에서는 Base 클래스의 foo 멤버함수를 final로 오버라이드 못하도록 해 놓았기 때문에 컴파일을 하면 에러가 발생합니다.

 

 

 

참고

위키피디아 http://en.wikipedia.org/wiki/C%2B%2B0x

저작자 표시
신고
by 흥배 2012.09.11 19:36

앞으로 조금씩이라도 꾸준히 C++11에 새로 추가되는 기능들을 간단하게 소개하려고 합니다.
새로운 라이브러리의 경우 boost 라이브러리에 있는 것은 boost 라이브러리를 통해서 예제와 같이 
좀더 자세하게 설명하고 그렇지 못한 것들은 간단한 설명과 코드로만 설명하려고 합니다.

C++ 프로그래머에게 새로운 C++ 표준은 먼 미래의 것이 아닙니다. 지금부터 조금씩 공부해보죠^^
(개인적으로 예전에 STL의 경우를 보면 앞으로 C++11을 아는 C++ 프로그래머와 모르는 프로그래머로 나누어지지 않을까 생각합니다)



현재의 C++에서는 두 가지 종류의 문자형을 지원하고 있습니다. char wchar_t 입니다.

char szName[] = “jacking”;

wchar_t szName2[] = L”jacking”;

 

그러나 C++0x에서는 유니코드를 강력하게 지원하기 위해 새로운 문자형이 추가 됩니다.

 

 

 

UTF-8

UTF-8을 사용하는 문자형은 따로 없고 기존의 char를 사용합니다.

char szName[] = u8”jacking”;

문자열 리터럴(literal) 앞에 u8을 붙입니다.

 

 

UTF-16

UTF-16을 사용하는 문자형 변수를 선언할 때는 char_16t를 사용합니다.

char16_t szName3[] = u”jacking”;

문자열 리터럴 앞에 u를 붙입니다.

 

  

UTF-32

UTF-32을 사용하는 문자형 변수를 선언할 때는 char_32t를 사용합니다.

char32_t szName4[] = U”jacking”;

문자열 리터럴 앞에 U를 붙입니다.





저작자 표시
신고
by 흥배 2012.09.10 10:00

C++03까지의 STL에는 데이터셋에서 가장 작은 요소를 찾을 때는 min_element, 가장 큰 요소를 찾을 때는max_element를 사용하였습니다.

그런데 만약 최소와 최대를 동시에 찾을 때는 어쩔 수 없이 min_element max_element를 각각 호출해야 하는 불필요한 불편한 점이 있었습니다.

 

C++0x에서는 이런 불편함을 개선하기 위해 한번에 최소와 최고를 찾아주는 minmax_element 알고리즘이 새로 생겼습니다.

 

 

minmax_element

template<class ForwardIterator>

    pair< ForwardIterator, ForwardIterator >

        minmax_element( ForwardIterator _First, ForwardIterator _Last );

template<class ForwardIterator, class BinaryPredicate>

    pair< ForwardIterator, ForwardIterator >

        minmax_element( ForwardIterator _First, ForwardIterator _Last, BinaryPredicate _Comp );

 

minmax_element 알고리즘에는 조건자를 사용하는 버전과 조건자를 사용하지 않은 버전 두 가지가 있습니다데이터셋의 자료형이 유저 정의형(class struct를 사용한)이라면 조건자가 있는 버전을 사용합니다.

 

예제 코드 >

#include <iostream>

#include <algorithm>

using namespace std;

 

 

int main()

{

           int Numbers[10] = { 50, 25, 20, 7, 15, 7, 10, 2, 1, 3 };

          

           pair<int*, int*> MinMaxValue = minmax_element( &Numbers[0], &Numbers[10] );

 

           cout << "최소 값 : " << *MinMaxValue.first << endl;

           cout << "최대 값 : " << *MinMaxValue.second << endl;

          

           return 0;

}

 

결과 >


 

저작자 표시
신고
by 흥배 2012.09.06 09:30

데이터셋을 시퀸스(연속적인)한 값으로 채우고 싶을 때는 iota 알고리즘을 사용합니다.

앞서 소개한 알고리즘들은 <algorithm> 헤더 파일에 정의 되어 있는 것에 반해 iota 알고리즘은<numeric> 헤더 파일에 정의 되어 있습니다.

 

itoa

template<class ForwardIterator, class T>

  void iota(ForwardIterator first, ForwardIterator last, T value);

 

 

아래는 예제 코드와 결과 입니다.

#include <iostream>

#include <vector>

#include <numeric>

using namespace std;

 

int main()

{

           vector<int> Numberlist;

           Numberlist.push_back( 2 );

           Numberlist.push_back( 5 );

           Numberlist.push_back( 7 );

           iota( Numberlist.begin(), Numberlist.end(), 2 );

 

           for( auto IterPos = Numberlist.begin(); IterPos != Numberlist.end(); ++IterPos )

           {

                     cout << *IterPos << endl;

           }

 

           return 0;

}

 

결과 >

 

위 예제를 보면 아시겠지만 iota의 세 번째 인자의 값이 시작 값이고, 이후에 값이 하나씩 증가합니다.

저작자 표시
신고
by 흥배 2012.09.06 09:00

is_heap is_heap_until는 앞서 소개했던 is_sorted, is_sorted_until과 비슷한 알고리즘입니다차이가 있다면is_heap is_heap_until는 정렬이 아닌 Heap을 다룬다는 것만 다릅니다.

 

is_heap은 데이터셋이 Heap으로 되어 있는지 아닌지, is_heap_until는 데이터셋에서 Heap이 아닌 요소의 첫 번째 위치를 반환합니다.

 

is_heap

template<class RandomAccessIterator>

    bool is_heap(

        RandomAccessIterator _First,

        RandomAccessIterator _Last

    );

template<class RandomAccessIterator, class BinaryPredicate>

    bool is_heap(

        RandomAccessIterator _First,

        RandomAccessIterator _Last,

        BinaryPredicate _Comp

    ); 

 

 

is_heap_until

template<class RandomAccessIterator>

    bool is_heap_until(

        RandomAccessIterator _First,

        RandomAccessIterator _Last

);

template<class RandomAccessIterator, class BinaryPredicate>

    bool is_heap_until(

        RandomAccessIterator _First,

        RandomAccessIterator _Last,

        BinaryPredicate _Comp

);

 

 

is_heap is_heap_until는 각각 조건자를 사용하는 버전과 사용하지 않는 버전 두 개가 있습니다조건자를 사용하지 않는 경우는 operator< 를 사용합니다.

 

 

그럼 is_heap is_heap_until을 사용한 아주 간단한 예제 코드를 봐 주세요^^

#include <iostream>

#include <algorithm>

using namespace std;

 

 

int main()

{

           int Numbers1[10] = { 50, 25, 20, 7, 15, 7, 10, 2, 1, 3 };

           int Numbers2[10] = { 50, 25, 20, 7, 15, 7, 10, 6, 11, 3 };

           int Numbers3[10] = { 50, 25, 20, 7, 15, 16, 12, 3, 6, 11 };

          

          

           bool IsResult = false;

           IsResult = is_heap( &Numbers1[0], &Numbers1[10], [](int x, int y) { return x < y; } );

           cout << "Numbers1 Heap인가 ? " << IsResult << endl;

 

           IsResult = is_heap( &Numbers2[0], &Numbers2[10], [](int x, int y) { return x < y; } );

           cout << "Numbers2 Heap인가 ? " << IsResult << endl;

 

           IsResult = is_heap( &Numbers3[0], &Numbers3[10] );

           cout << "Numbers3 Heap인가 ? " << IsResult << endl;

 

           cout << endl;

           int* NumIter = is_heap_until( &Numbers2[0], &Numbers2[10], [](int x, int y) { return x < y; } );

           cout << "Numbers2에서 Heap되지 않은 첫 번째 위치의 값 : " << *NumIter << endl;

 

           return 0;

}

 

< 결과 >

 

 

 

ps : 자료구조 Heap에 대해서 잘 모르시는 분들은 아래의 글을 참고해 주세요

http://blog.naver.com/ctpoyou/105423523

저작자 표시
신고
by 흥배 2012.09.05 19:30

is_sorted는 데이터셋이(컨테이너나 배열정렬되어 있다면 true를 반환하고그렇지 않다면 false를 반환 합니다.

is_sorted_until는 데이터셋에서 정렬되어 있지 않는 요소의 첫 번째 위치를 반환합니다.

 

is_sorted와 is_sorted_until의 원형은 아래와 같습니다.

is_sorted

template<class ForwardIterator>

    bool is_sorted( ForwardIterator _First, ForwardIterator _Last );


template<class ForwardIterator, class BinaryPredicate>

    bool is_sorted( ForwardIterator _First, ForwardIterator _Last, BinaryPredicate _Comp );

 

 

is_sorted_until

template<class ForwardIterator>

    ForwardIterator is_sorted_until( ForwardIterator _First, ForwardIterator _Last);

 

template<class ForwardIterator, class BinaryPredicate>

    ForwardIterator is_sorted_until( ForwardIterator _First, ForwardIterator _Last,

               BinaryPredicate _Comp );

 

위의 is_sorted와 is_sorted_until의 원형을 보시면 알겠지만 조건자(함수객체)를 사용하는 버전과 사용하지 않는 버전 두 가지가 있습니다.

조건자를 사용하지 않는 경우 기본으로 operator<가 적용됩니다.

 

프로그래머는 코드로 이해하죠? ^^ 그럼 바로 예제 코드 들어갑니다.

이번 예제는 간단하게 만들기 위해 정수 배열을 사용해 보았습니다아마 STL을 이제 막 공부하고 있는 분들은 알고리즘을 STL의 컨테이너에만 사용할 수 있는 것으로 알고 있는 분들도 있을텐데 그렇지 않습니다.아래 예제는 int 형 배열을 사용하였습니다.

 

예제 코드 >

#include <iostream>

#include <algorithm>

using namespace std;

 

 

int main()

{

           int Numbers1[5] = { 1, 2, 3, 4, 5 };

           int Numbers2[5] = { 5, 4, 3, 2, 1 };

           int Numbers3[5] = { 1, 2, 4, 3, 5 };

           bool IsResult = false;

 

          

           IsResult = is_sorted( &Numbers1[0], &Numbers1[5], [](int x, int y) { return x < y; } );

           cout << "Numbers1. 오름 차순 ? " << IsResult << endl;

 

           IsResult = is_sorted( &Numbers2[0], &Numbers2[5], [](int x, int y) { return x > y; } );

           cout << "Numbers2. 내림 차순 ? " << IsResult << endl;

 

           IsResult = is_sorted( &Numbers3[0], &Numbers3[5], [](int x, int y) { return x < y; } );

           cout << "Numbers3. 오름 차순 ? " << IsResult << endl;

 

           cout << endl;

           cout << "is_sorted에서 조건자(함수객체)를 생략한 경우 " << IsResult << endl;

           IsResult = is_sorted( &Numbers1[0], &Numbers1[5] );

           cout << "Numbers1 is_sorted의 결과는 ? " << IsResult << endl;

           IsResult = is_sorted( &Numbers2[0], &Numbers2[5] );

           cout << "Numbers2 is_sorted의 결과는 ? " << IsResult << endl;

 

           cout << endl;

           int Numbers4[8] = { 1, 2, 3, 5, 4, 5, 7, 8 };

           int* NumIter = is_sorted_until( &Numbers4[0], &Numbers4[5], [](int x, int y) { return x < y; } );

           cout << "Numbers4에서 정렬되지 않은 첫 번째 위치의 값 : " << *NumIter << endl;

 

           return 0;

}

 

결과 >


 

저작자 표시
신고
by 흥배 2012.09.05 19:28
| 1 2 3 4 5 6 7 |